3.20 \(\int (a+a \cos (c+d x))^2 \sec ^3(c+d x) \, dx\)

Optimal. Leaf size=54 \[ \frac{2 a^2 \tan (c+d x)}{d}+\frac{3 a^2 \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac{a^2 \tan (c+d x) \sec (c+d x)}{2 d} \]

[Out]

(3*a^2*ArcTanh[Sin[c + d*x]])/(2*d) + (2*a^2*Tan[c + d*x])/d + (a^2*Sec[c + d*x]*Tan[c + d*x])/(2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0788182, antiderivative size = 54, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 5, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.238, Rules used = {2757, 3770, 3767, 8, 3768} \[ \frac{2 a^2 \tan (c+d x)}{d}+\frac{3 a^2 \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac{a^2 \tan (c+d x) \sec (c+d x)}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^2*Sec[c + d*x]^3,x]

[Out]

(3*a^2*ArcTanh[Sin[c + d*x]])/(2*d) + (2*a^2*Tan[c + d*x])/d + (a^2*Sec[c + d*x]*Tan[c + d*x])/(2*d)

Rule 2757

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Int[Expan
dTrig[(a + b*sin[e + f*x])^m*(d*sin[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] &
& IGtQ[m, 0] && RationalQ[n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rubi steps

\begin{align*} \int (a+a \cos (c+d x))^2 \sec ^3(c+d x) \, dx &=\int \left (a^2 \sec (c+d x)+2 a^2 \sec ^2(c+d x)+a^2 \sec ^3(c+d x)\right ) \, dx\\ &=a^2 \int \sec (c+d x) \, dx+a^2 \int \sec ^3(c+d x) \, dx+\left (2 a^2\right ) \int \sec ^2(c+d x) \, dx\\ &=\frac{a^2 \tanh ^{-1}(\sin (c+d x))}{d}+\frac{a^2 \sec (c+d x) \tan (c+d x)}{2 d}+\frac{1}{2} a^2 \int \sec (c+d x) \, dx-\frac{\left (2 a^2\right ) \operatorname{Subst}(\int 1 \, dx,x,-\tan (c+d x))}{d}\\ &=\frac{3 a^2 \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac{2 a^2 \tan (c+d x)}{d}+\frac{a^2 \sec (c+d x) \tan (c+d x)}{2 d}\\ \end{align*}

Mathematica [A]  time = 0.0117205, size = 54, normalized size = 1. \[ \frac{2 a^2 \tan (c+d x)}{d}+\frac{3 a^2 \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac{a^2 \tan (c+d x) \sec (c+d x)}{2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^2*Sec[c + d*x]^3,x]

[Out]

(3*a^2*ArcTanh[Sin[c + d*x]])/(2*d) + (2*a^2*Tan[c + d*x])/d + (a^2*Sec[c + d*x]*Tan[c + d*x])/(2*d)

________________________________________________________________________________________

Maple [A]  time = 0.076, size = 58, normalized size = 1.1 \begin{align*}{\frac{3\,{a}^{2}\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{2\,d}}+2\,{\frac{{a}^{2}\tan \left ( dx+c \right ) }{d}}+{\frac{{a}^{2}\sec \left ( dx+c \right ) \tan \left ( dx+c \right ) }{2\,d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+cos(d*x+c)*a)^2*sec(d*x+c)^3,x)

[Out]

3/2/d*a^2*ln(sec(d*x+c)+tan(d*x+c))+2*a^2*tan(d*x+c)/d+1/2/d*a^2*sec(d*x+c)*tan(d*x+c)

________________________________________________________________________________________

Maxima [A]  time = 1.10201, size = 119, normalized size = 2.2 \begin{align*} -\frac{a^{2}{\left (\frac{2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 2 \, a^{2}{\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 8 \, a^{2} \tan \left (d x + c\right )}{4 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^2*sec(d*x+c)^3,x, algorithm="maxima")

[Out]

-1/4*(a^2*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) - 2*a^2*(log(s
in(d*x + c) + 1) - log(sin(d*x + c) - 1)) - 8*a^2*tan(d*x + c))/d

________________________________________________________________________________________

Fricas [A]  time = 1.66214, size = 215, normalized size = 3.98 \begin{align*} \frac{3 \, a^{2} \cos \left (d x + c\right )^{2} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, a^{2} \cos \left (d x + c\right )^{2} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \,{\left (4 \, a^{2} \cos \left (d x + c\right ) + a^{2}\right )} \sin \left (d x + c\right )}{4 \, d \cos \left (d x + c\right )^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^2*sec(d*x+c)^3,x, algorithm="fricas")

[Out]

1/4*(3*a^2*cos(d*x + c)^2*log(sin(d*x + c) + 1) - 3*a^2*cos(d*x + c)^2*log(-sin(d*x + c) + 1) + 2*(4*a^2*cos(d
*x + c) + a^2)*sin(d*x + c))/(d*cos(d*x + c)^2)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**2*sec(d*x+c)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.48597, size = 122, normalized size = 2.26 \begin{align*} \frac{3 \, a^{2} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right ) - 3 \, a^{2} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right ) - \frac{2 \,{\left (3 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 5 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}^{2}}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^2*sec(d*x+c)^3,x, algorithm="giac")

[Out]

1/2*(3*a^2*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*a^2*log(abs(tan(1/2*d*x + 1/2*c) - 1)) - 2*(3*a^2*tan(1/2*d*
x + 1/2*c)^3 - 5*a^2*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^2)/d